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Fault Injection (FI) by Voltage Glitching
Traditional Arbitrary

square pulse (idealized) polynomial interpolation

( uncontrolled ( refined
actual waveform waveform control
Vee
Vce
glitch — pC HC
GND_C GND_——

Why? — Differential Fault Analysis, bypass code read-out protection, fun ...
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Previous Work

“Shaping the Glitch” [1] at CHES 2019
Their approach:

<\

Better waveform control vs. traditional glitch GND--------- -

Vee -

= Cubic interpolation over random points

Shown to improve success rate

Enabled vulnerabilities in 6 microcontrollers

= Genetic algorithm “discovers” waveform

Limitations: .| Vce
= High reset rate when glitching (why?) AWG I_,lC
= Blindly trusting genetic algorithm to do the job
= What features (do not) work in a waveform? GND—#

[1] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. “Shaping the Glitch: Optimizing Voltage Fault Injection Attacks”.
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https://tches.iacr.org/index.php/TCHES/article/view/7390

Our Work and Why it May Matter to You

= Questions we investigate

How to move away from random supporting points?
Is it possible to constrain the waveform to hardware-limits?
Can we limit the search-space prior to automated learning?

= Challenges we want to solve

Find properties of a glitch that promote success and reduce reset rate
Generate waveforms more systematically while respecting hardware-constraints
Provide safety guarantees on all generated waveforms

= Scope of this work

Focus on the properties of the waveform generation prior to automated learning
In other words: this is not about the efficiency of the search (covered separately)

— targeted improvements important to perform security testing more economically!
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Outline of our Work

1. Waveform Parametrization
Defining “valid” waveforms
Polynomial basis: what can go wrong
Our proposed approach: Modular Splines for generating waveforms

N

. Awgsomefi: Fault Injection Framework (see paper)
3. Case Studies

Loop escape on the STM32F0 with specificity
Improved firmware extraction from the 78KOR

4. Conclusion

Summary
Future Work
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Waveform Parametrization: Our Constraints

= Starts at fy and ends at t,,
= Begins and ends at Vo,

= Must stay within [Vi,in, Vinax] to
avoid damaging the chip
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Naive Interpolation

= For simplicity, let’s interpolate polynomial on equispaced points

= We set waveform(ty) = waveform(t,) = Vyom

= The rest randomly picked to be within [Vi,in, Vinax]

= What can possibly go wrong? (paper=more explanations, discussing cubic interpolation)
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Naive Interpolation
= For simplicity, let’s interpolate polynomial on equispaced points
= We set waveform(ty) = waveform(t,) = Vyom

= The rest randomly picked to be within [Vi,in, Vinax]
= What can possibly go wrong? (paper=more explanations, discussing cubic interpolation)
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Cubic Hermite Splines as Waveforms

Vina
Vaom
= Needed: Smoothness/control tradeoff )
= Set first derivative at interpolation points $
= Interpolation points once differentiable
Voin

to

= Idea: What if we set the derivative at each breakpoint to 0?

= Only interpolation points can be minima/maxima in interval...

— Benefit: waveform will always stay inbounds!
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Selection of Glitch Duration

= ty mostly picked analytically (e.g. by doing side-channel analysis)
= Instead of selecting t,, we look for tp = t, — tg

= In previous works this is an additional parameter for exhaustive testing
= Observation: Not all durations make sense for complicated waveforms
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Modular Splines: Limiting the Slew Rate

= ldea: construct the Hermite spline one segment at a time
Begin at ty and V) = Vo
Choose tjz1 > t;
Choose Vi1 such that

Repeat from step 2 untlI i=n-1

Vnum V-1
—ln-1

V’“ Vl| < limitay

Choose large enough t, so that < limitay

= Forverysmalltj 1 —t; = Vi1 =V,

= For large enough t;;1 —t; = Vj41 chosen from [Vi,in, Vinax]

= tp no longer chosen arbitrarily: sum of segments!
= The more “complex” the glitch the higher its average duration

— Benefit: search space for t,, determined by OPAMP capability
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Modular Splines in Action
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Modular Splines in Action
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Modular Splines in Action

Vmax tep 3
Step 0
v,
nom Step 1
()
i)
<
=
o St
>
Vmin
ty
Glitch Time

Oregon State University



Modular Splines in Action
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Modular Splines in Action
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Modular Splines in Action
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Modular Splines: Summary

= Proposed option is the only one that is guaranteed to be in bounds

= Searchspace reduced by bounding voltages at interpolation points based on slew rate

= Full parameters list:

Start time of glitch, ty
Total number of spline segments, n
Segments t; (n total)

Inner voltages, V; (n — 1 total) bounded by slew rate!

— Modular Splines prove a much more systematic approach with smaller search-space!
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Outline of this Work

1. Waveform Parametrization
Defining “valid” waveforms
Polynomial basis: what can go wrong
Modular Splines for generating waveforms

N

. Awgsomefi: Fault Injection Framework (see paper)
3. Case Studies

Loop escape on the STM32F0 with specificity
Improved firmware extraction from the 78KO0R

4. Conclusion

Summary
Future Work
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Case Study: STM32 Loop Escape

while (glitched) // <- Glitch

.
2 {

3 5

4

5 glitched++;

6 asm(”NOP”) ;

7 asm(”NOP”) ;

. /] continue NOP slide = Goal: escape from loop

0 . . . N
. if (glitched == oxo1u) | = How many instructions skipped?
n sigTermOne(); = Can we control number of skips?
12 sigEnabTwo () ;

13 } else if (glitched == ox02u) {

14 sigTermOne();

15 sigTermTwo();

}
17 // Check other possible signals
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STM32: Waveform Base Comparison
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(a) Chebyshev polynomial and its derivative.
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(c) Spline glitch waveform and its derivative.
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(d) Spline-glitch applied to STM32.

Figure: Polynomial (0% glitch success) vs. Hermite spline (40% glitch success).



STM32: Exploring Specificity

= Can we look for waveforms that achieve /\

s
. . . . 80
single vs double instruction skips? H
o
. . . >15
= Small difference in waveform: big
difference in outcome! 1o

0 15 30 45 90 105 120 135

60
Glitch Time (ns)

Single Skip Success Rate Double Skip Success Rate

Single Skip Waveform 55% ~ 0%
6% 41%
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Case Study: 78KOR Firmware Extraction

78KOR Plan of Attack: verify-only microcontroller
Need ChecksumLeak and ShortVerify as gadgets

= ChecksumLeak: Omit a byte from the checksum
Subtract corrupted checksum from correct checksum to leak a byte!
We found waveform that can leak one or two bytes
Noisy gadget = need ShortVerify
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78KOR Plan of Attack: shortverify

= ShortVerify: Verify multiples of 4 bytes
Normally can only verify multiples of 256 bytes
Verifications must be 256 byte aligned
In previous works, fault injection is used
In this work: “properly configured software bypass”

Verify Command (as intended) ShortVerify Command (proposed)
Programmer 78KOR Programmer 78KOR
VERIFY[STARTADDR][ENDADDR] VERIFY[STARTADDR][STARTADDR+256]
StATUS FRAME > STATUS FRAME >
T)ATA FRAME[LEN][DATA][ETB/ETX] D:TA FRAME[LEN=4][ DATAWORD][ETX]
< StAaTUS FRAME (ST1/ST2) > < StATUS FRAME (ST1/ST2) >
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Our Attack

Idea: Extract 4 bytes at a time

Let’s try to extract bytes 4 — 7.
ChecksumLeak Command (2-Byte variant)
Programmer 78KOR

1. Find the reference checksum (no glitch) (1) ! C"ECKSUM[STARTADDR][ENDAD[’Rl:
, DATA FRAME (CHECKSUM DATA) :

2. Leak candidates for couplet 4,5
Use ChecksumLeak to omit byte 4 (2) .U LU U U U U

Use ChecksumLeak again to omit bytes 4,5 (3) : CHECKSUM[STARTADDR][ENDADDR] |
3. Leak candidates for couplet 6,7 @: GLITCH(4, SINGLE-BYTE SKIPPED) |
Use ChecksumLeak to omit byte 6 (2) ! :DATA FRAME (CHECKSUM GUITCH1p) |

Use ChecksumLeak again to omit bytes 6,7(3) ~ —==-======-=-==-=-==--=-=--~

. CHECKSUM[STARTADDR][ENDADDR]
r

4. Concatenate candidate couplets and run

1

1 > !

. . - 1
ShortVerify to find the correct bytes! ®: GuiTcH(4, TWO-BYTES SKIPPED) |
1 DATA FRAME (CHECKSUM GLITCH3p) :

A
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Our Glitch Waveform

= About 2x longer than used in original work

= Allows double glitches

= Smooth: no overshoots

= Lower reset rate = more glitches per given time interval
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(a) Fault injection waveform. (b) Scope measurement of fault injection.
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Benchmark Comparison
After 10 minutes of glitching (same condition as [1])

Vulnerability Technique Success (S) Reset (R) R/S Glitches

: AWG [1] 1291 (6.8%) 2786 (14.6%) 2.16 19044
ShortVerify | s work [2] 10216 (100%) - - 0
ShortChecksum  AWG 1] 728 (44%) 2912 (17.7%) 401 16475

this work [3] - - - -
ChecksumLea  AVG 1] 687 (8.6%) 2515 (31.5%) 3.66 7977

this work [4] 1427 (8.8%) 389 (24%) 0.27 16216

— Overall, new techniques made this a much more powerful attack!

[2] software-only bypass: always successful!
[3] not needed: search-space small enough

[4] Reset/Success rate improved from 3.66 to 0.27

Oregon State University



Outline of this Work

1. Waveform Parametrization

= Defining “valid” waveforms

= Polynomial basis: what can go wrong

= Modular Splines for generating waveforms
2. Awgsomefi: Fault Injection Framework (see paper)
3. Case Studies

= Loop escape on the STM32F0 with specificity
= Improved firmware extraction from the 78KOR

4. Conclusion

= Summary
= Future Work
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Summary and Future work

Summary:
= Arbitrary wave voltage glitches provide interesting new opportunities
= Full potential has not been realized yet
= We proposed and demonstrated a new waveform parametrization method

= Using specificity, we vastly improved an existing firmware extraction attack

Future work:
= Do we have to interpolate or are there even better options?
= Modular Splines will benefit from new search strategies (work in progress)

= X-device profiling and how well does this perform when facing countermeasures?

Oregon State University
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Thank you for your attention!
Questions?

vincent.immler@oregonstate.edu
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Backup Slides for Q&A
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Arbitrary Waveform Glitches: Polynomials

Ve
Vrom
= Property 1: Polynomials can approximate
any waveform in the [, t,] interval *;E
= Property 2: Degree n polynomials are
uniquely determined by n + 1 points
Vi

to
Glitch Time

= Idea: Interpolate polynomials on n + 1 points within [tg, t,] to generate waveforms

= Question: What points t to interpolate on? Does it matter? Yes!
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Fixing Oscillations
Insight: even if our interpolation points only pass through [Vi,in, Vinax], the waveform

u
may still significantly oscillate out of bounds

= Why does this happen? Runge Phenomenon!
= Instead we interpolate on Chebyshev nodes

VAN /N v,
Vasi — = i [—
L) \ p o
o o
3
Vimin v v > Vonin
ty to ty
Glitch Time

to
Glitch Time

Figure: Interpolating shifted Runge function on equispaced points and Chebyshev nodes
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Cubic Splines as Waveforms

Used in all previous works on arbitrary waveform voltage glitching
Build complicated waveforms by “stitching” together cubic polynomials

Spline is twice differentiable at knots + resilient to oscillations!

= Multiple configurations available (clamped, not-a-knot)

= However: slew-rate left uncontrolled!

— spline: not-a-knot
Yimax Spline: clamped
nom
Q
o
]
=
o
>
Vmin
to tﬂ
Glitch Time
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Cubic Splines: Summary

= Less smooth than polynomials but still twice differentiable everywhere
= Potentially much larger search space (but also better control)

= Stays in bounds (mostly) even on equidistant points

Vmax
N /’ -

Voltage

Vmin
t

to
Glitch Time

Oregon State University

29



