Analysis of Arbitrary Waveform Generation for
Voltage Glitches

Stanislav Lyakhov, Vincent Immler
vincent.immler@oregonstate.edu

FDTC, September 10, 2023

) Oregon State
University

Fault Injection (FI) by Voltage Glitching
Traditional Arbitrary

square pulse (idealized) polynomial interpolation

(uncontrolled (refined
actual waveform waveform control
Vee
Vce
glitch — pC HC
GND_C GND_——

Why? — Differential Fault Analysis, bypass code read-out protection, fun ...

Oregon State University

Previous Work

“Shaping the Glitch” [1] at CHES 2019
Their approach:

<\

Better waveform control vs. traditional glitch GND--------- -

Vee -

= Cubic interpolation over random points

Shown to improve success rate

Enabled vulnerabilities in 6 microcontrollers

= Genetic algorithm “discovers” waveform

Limitations: .| Vce
= High reset rate when glitching (why?) AWG I_,lC
= Blindly trusting genetic algorithm to do the job
= What features (do not) work in a waveform? GND—#

[1] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. “Shaping the Glitch: Optimizing Voltage Fault Injection Attacks”.

Oregon State University

https://tches.iacr.org/index.php/TCHES/article/view/7390

Our Work and Why it May Matter to You

= Questions we investigate

How to move away from random supporting points?
Is it possible to constrain the waveform to hardware-limits?
Can we limit the search-space prior to automated learning?

= Challenges we want to solve

Find properties of a glitch that promote success and reduce reset rate
Generate waveforms more systematically while respecting hardware-constraints
Provide safety guarantees on all generated waveforms

= Scope of this work

Focus on the properties of the waveform generation prior to automated learning
In other words: this is not about the efficiency of the search (covered separately)

— targeted improvements important to perform security testing more economically!

Oregon State University

Outline of our Work

1. Waveform Parametrization
Defining “valid” waveforms
Polynomial basis: what can go wrong
Our proposed approach: Modular Splines for generating waveforms

N

. Awgsomefi: Fault Injection Framework (see paper)
3. Case Studies

Loop escape on the STM32F0 with specificity
Improved firmware extraction from the 78KOR

4. Conclusion

Summary
Future Work

Oregon State University

Waveform Parametrization: Our Constraints

= Starts at fy and ends at t,,
= Begins and ends at Vo,

= Must stay within [Vi,in, Vinax] to
avoid damaging the chip

Oregon State University

Vmax
Vhom

Voltage

Vmin

to

Glitch Time

th

Naive Interpolation

= For simplicity, let’s interpolate polynomial on equispaced points

= We set waveform(ty) = waveform(t,) = Vyom

= The rest randomly picked to be within [Vi,in, Vinax]

= What can possibly go wrong? (paper=more explanations, discussing cubic interpolation)

Oregon State University

Naive Interpolation
= For simplicity, let’s interpolate polynomial on equispaced points
= We set waveform(ty) = waveform(t,) = Vyom

= The rest randomly picked to be within [Vi,in, Vinax]
= What can possibly go wrong? (paper=more explanations, discussing cubic interpolation)

IRVAVAY)

)

Voltage

to
Glitch Time

Oregon State University

Cubic Hermite Splines as Waveforms

Vina
Vaom
= Needed: Smoothness/control tradeoff)
= Set first derivative at interpolation points $
= Interpolation points once differentiable
Voin

to

= Idea: What if we set the derivative at each breakpoint to 0?

= Only interpolation points can be minima/maxima in interval...

— Benefit: waveform will always stay inbounds!

Oregon State University

Glitch Time

Selection of Glitch Duration

= ty mostly picked analytically (e.g. by doing side-channel analysis)
= Instead of selecting t,, we look for tp = t, — tg

= In previous works this is an additional parameter for exhaustive testing
= Observation: Not all durations make sense for complicated waveforms

@ uiity (3 Display M Acauire

™ Trigger # Cursors [Measure D Math An

v

B

= o
H0c soomvl
FULL-850my

Oregon State University

SIGLENT

alysis 8

s
@ vty O Diply M Adure M Tz # Cosors b Messwe M Math B Anass oo

L‘Vﬂ i ’\r/\’

il

Timebase
taoms 200nsid Nommal 158V oaaxta
100kpts 500GSals Edge Rsing 20235117

Figure: 120 ns vs.

8 a
®
= oo Timebase
e B i e
N
800 ns glitch.

Modular Splines: Limiting the Slew Rate

= ldea: construct the Hermite spline one segment at a time
Begin at ty and V) = Vo
Choose tjz1 > t;
Choose Vi1 such that

Repeat from step 2 untlI i=n-1

Vnum V-1
—ln-1

V’“ Vl| < limitay

Choose large enough t, so that < limitay

= Forverysmalltj 1 —t; = Vi1 =V,

= For large enough t;;1 —t; = Vj41 chosen from [Vi,in, Vinax]

= tp no longer chosen arbitrarily: sum of segments!
= The more “complex” the glitch the higher its average duration

— Benefit: search space for t,, determined by OPAMP capability

Oregon State University

Modular Splines in Action

Vmax
Step 0

Vnom Step 1
]
0
£
|—°1 L d
>

Vmin
to ty
Glitch Time

Oregon State University

Modular Splines in Action

Vmax
Step 0
v,
nom Step 1
&0
<
=
g Step 2
.
Vmin
to ty

Oregon State University

Glitch Time

Modular Splines in Action

Vmax tep 3
Step 0
v,
nom Step 1
()
i)
<
=
o St
>
Vmin
ty
Glitch Time

Oregon State University

Modular Splines in Action

Vmax

Vnom

Voltage

Vmin

Oregon State University

to
Glitch Time

ty

Modular Splines in Action

Vmax

Vl’l om

Voltage

Vmin

Oregon State University

Lo
Glitch Time

tn

Modular Splines in Action

Vmax

te]

Vnom

Voltage

Vmin

Oregon State University

te]

tep 6|

to
Glitch Time

ty

Modular Splines: Summary

= Proposed option is the only one that is guaranteed to be in bounds

= Searchspace reduced by bounding voltages at interpolation points based on slew rate

= Full parameters list:

Start time of glitch, ty
Total number of spline segments, n
Segments t; (n total)

Inner voltages, V; (n — 1 total) bounded by slew rate!

— Modular Splines prove a much more systematic approach with smaller search-space!

Oregon State University

Outline of this Work

1. Waveform Parametrization
Defining “valid” waveforms
Polynomial basis: what can go wrong
Modular Splines for generating waveforms

N

. Awgsomefi: Fault Injection Framework (see paper)
3. Case Studies

Loop escape on the STM32F0 with specificity
Improved firmware extraction from the 78KO0R

4. Conclusion

Summary
Future Work

Oregon State University

Outline of this Work

1. Waveform Parametrization

Defining “valid” waveforms

Polynomial basis: what can go wrong

Modular Splines for generating waveforms
2. Awgsomefi: Fault Injection Framework (see paper)
3. Case Studies

Loop escape on the STM32F0 with specificity
Improved firmware extraction from the 78KO0R

4. Conclusion

Summary
Future Work

Oregon State University

Case Study: STM32 Loop Escape

while (glitched) // <- Glitch

.
2 {

3 5

4

5 glitched++;

6 asm(”NOP”) ;

7 asm(”NOP”) ;

. /] continue NOP slide = Goal: escape from loop

0 . . . N
. if (glitched == oxo1u) | = How many instructions skipped?
n sigTermOne(); = Can we control number of skips?
12 sigEnabTwo () ;

13 } else if (glitched == ox02u) {

14 sigTermOne();

15 sigTermTwo();

}
17 // Check other possible signals

Oregon State University

STM32: Waveform Base Comparison

Oregon State University

Voltage (V)

Voltage (V)

Rate (V/ns)

[75 50 150 175 260

75 00 135
Glitch Time (ns)

(a) Chebyshev polynomial and its derivative.

[F3 50 75 100 135
Glitch Time (ns)

(c) Spline glitch waveform and its derivative.

Rate (V/ns)

~0.053

T e e e s e

[———

Gy

(d) Spline-glitch applied to STM32.

Figure: Polynomial (0% glitch success) vs. Hermite spline (40% glitch success).

STM32: Exploring Specificity

= Can we look for waveforms that achieve /\

s
. . . . 80
single vs double instruction skips? H
o
. . . >15
= Small difference in waveform: big
difference in outcome! 1o

0 15 30 45 90 105 120 135

60
Glitch Time (ns)

Single Skip Success Rate Double Skip Success Rate

Single Skip Waveform 55% ~ 0%
6% 41%

Oregon State University

Case Study: 78KOR Firmware Extraction

78KOR Plan of Attack: verify-only microcontroller
Need ChecksumLeak and ShortVerify as gadgets

= ChecksumLeak: Omit a byte from the checksum
Subtract corrupted checksum from correct checksum to leak a byte!
We found waveform that can leak one or two bytes
Noisy gadget = need ShortVerify

@ Uity Oospay MAcqure M Trigger 4k Cumors b Measwe D Math Bl Anabss Do Y g Gurgena

fic) <201z

v Y
Glitch Trigger —
Vee-REGe T
om——
1400 ps I 4
— GLITCH
& - ——
Command ACK Checksum Calculation Corrupted Checksum
= “H \ HUUL
51 003)0:02_ 001 @06 (01003) mm@-m@m 002 J080 J080 JOE J0x03)
Tm(uk Vee-REGE UART t
oCw ocivi [Timebase Trigger C &
e S
202352

Oregon State University

78KOR Plan of Attack: shortverify

= ShortVerify: Verify multiples of 4 bytes
Normally can only verify multiples of 256 bytes
Verifications must be 256 byte aligned
In previous works, fault injection is used
In this work: “properly configured software bypass”

Verify Command (as intended) ShortVerify Command (proposed)
Programmer 78KOR Programmer 78KOR
VERIFY[STARTADDR][ENDADDR] VERIFY[STARTADDR][STARTADDR+256]
StATUS FRAME > STATUS FRAME >
T)ATA FRAME[LEN][DATA][ETB/ETX] D:TA FRAME[LEN=4][DATAWORD][ETX]
< StAaTUS FRAME (ST1/ST2) > < StATUS FRAME (ST1/ST2) >

Oregon State University

Our Attack

Idea: Extract 4 bytes at a time

Let’s try to extract bytes 4 — 7.
ChecksumLeak Command (2-Byte variant)
Programmer 78KOR

1. Find the reference checksum (no glitch) (1) ! C"ECKSUM[STARTADDR][ENDAD[’Rl:
, DATA FRAME (CHECKSUM DATA) :

2. Leak candidates for couplet 4,5
Use ChecksumLeak to omit byte 4 (2) .U LU U U U U

Use ChecksumLeak again to omit bytes 4,5 (3) : CHECKSUM[STARTADDR][ENDADDR] |
3. Leak candidates for couplet 6,7 @: GLITCH(4, SINGLE-BYTE SKIPPED) |
Use ChecksumLeak to omit byte 6 (2) ! :DATA FRAME (CHECKSUM GUITCH1p) |

Use ChecksumLeak again to omit bytes 6,7(3) ~ —==-======-=-==-=-==--=-=--~

. CHECKSUM[STARTADDR][ENDADDR]
r

4. Concatenate candidate couplets and run

1

1 > !

. . - 1
ShortVerify to find the correct bytes! ®: GuiTcH(4, TWO-BYTES SKIPPED) |
1 DATA FRAME (CHECKSUM GLITCH3p) :

A

Oregon State University

Our Glitch Waveform

= About 2x longer than used in original work

= Allows double glitches

= Smooth: no overshoots

= Lower reset rate = more glitches per given time interval

SIGLENT

Guity Do Mamee P #onos e M B A S
1.8
0.008
16
0.006 _ v rvwrww—v—«\ (/v—~Hv—/\»rWMM"~’
1.4)
- 0.004 £ \ /
~>4 1.2 ’ 3 \ !
]
0002 @ {
210 ® Lo |
S] A
= A
5 0.000 v " /
Sos8 5 8 /
-0.0025 ™y /
0.6 N /
0.004 M
0.4 SRR
-0.006 ™
0.2 L
0 250 500 750 1000 1250 1500 1750 e Tt
Glitch Time (ns) R e T oo Sy 200t
(a) Fault injection waveform. (b) Scope measurement of fault injection.

Oregon State University

20

Benchmark Comparison
After 10 minutes of glitching (same condition as [1])

Vulnerability Technique Success (S) Reset (R) R/S Glitches

: AWG [1] 1291 (6.8%) 2786 (14.6%) 2.16 19044
ShortVerify | s work [2] 10216 (100%) - - 0
ShortChecksum AWG 1] 728 (44%) 2912 (17.7%) 401 16475

this work [3] - - - -
ChecksumLea AVG 1] 687 (8.6%) 2515 (31.5%) 3.66 7977

this work [4] 1427 (8.8%) 389 (24%) 0.27 16216

— Overall, new techniques made this a much more powerful attack!

[2] software-only bypass: always successful!
[3] not needed: search-space small enough

[4] Reset/Success rate improved from 3.66 to 0.27

Oregon State University

Outline of this Work

1. Waveform Parametrization

= Defining “valid” waveforms

= Polynomial basis: what can go wrong

= Modular Splines for generating waveforms
2. Awgsomefi: Fault Injection Framework (see paper)
3. Case Studies

= Loop escape on the STM32F0 with specificity
= Improved firmware extraction from the 78KOR

4. Conclusion

= Summary
= Future Work

Oregon State University

22

Summary and Future work

Summary:
= Arbitrary wave voltage glitches provide interesting new opportunities
= Full potential has not been realized yet
= We proposed and demonstrated a new waveform parametrization method

= Using specificity, we vastly improved an existing firmware extraction attack

Future work:
= Do we have to interpolate or are there even better options?
= Modular Splines will benefit from new search strategies (work in progress)

= X-device profiling and how well does this perform when facing countermeasures?

Oregon State University

23

Thank you for your attention!
Questions?

vincent.immler@oregonstate.edu

24

Backup Slides for Q&A

25

Arbitrary Waveform Glitches: Polynomials

Ve
Vrom
= Property 1: Polynomials can approximate
any waveform in the [, t,] interval *;E
= Property 2: Degree n polynomials are
uniquely determined by n + 1 points
Vi

to
Glitch Time

= Idea: Interpolate polynomials on n + 1 points within [tg, t,] to generate waveforms

= Question: What points t to interpolate on? Does it matter? Yes!

Oregon State University 26

Fixing Oscillations
Insight: even if our interpolation points only pass through [Vi,in, Vinax], the waveform

u
may still significantly oscillate out of bounds

= Why does this happen? Runge Phenomenon!
= Instead we interpolate on Chebyshev nodes

VAN /N v,
Vasi — = i [—
L) \ p o
o o
3
Vimin v v > Vonin
ty to ty
Glitch Time

to
Glitch Time

Figure: Interpolating shifted Runge function on equispaced points and Chebyshev nodes

Oregon State University

27

Cubic Splines as Waveforms

Used in all previous works on arbitrary waveform voltage glitching
Build complicated waveforms by “stitching” together cubic polynomials

Spline is twice differentiable at knots + resilient to oscillations!

= Multiple configurations available (clamped, not-a-knot)

= However: slew-rate left uncontrolled!

— spline: not-a-knot
Yimax Spline: clamped
nom
Q
o
]
=
o
>
Vmin
to tﬂ
Glitch Time

Oregon State University

28

Cubic Splines: Summary

= Less smooth than polynomials but still twice differentiable everywhere
= Potentially much larger search space (but also better control)

= Stays in bounds (mostly) even on equidistant points

Vmax
N /’ -

Voltage

Vmin
t

to
Glitch Time

Oregon State University

29

