
Analysis of Arbitrary Waveform Generation for
Voltage Glitches
Stanislav Lyakhov, Vincent Immler

vincent.immler@oregonstate.edu

FDTC, September 10, 2023



Fault Injection (FI) by Voltage Glitching

Traditional Arbitrary

waveform

injection
method

square pulse (idealized) polynomial interpolation

Vcc

GND

Vcc

GND

glitch μC
GND

μC
+
− Vcc

AWG

glitch on
glitch off

glitch type

actual waveform
uncontrolled

parameters

waveform control
refined

Why? → Differential Fault Analysis, bypass code read-out protection, fun . . .
Oregon State University 1



Previous Work

“Shaping the Glitch” [1] at CHES 2019

Their approach:
■ Cubic interpolation over random points

■ Better waveform control vs. traditional glitch

■ Shown to improve success rate

■ Enabled vulnerabilities in 6 microcontrollers

■ Genetic algorithm “discovers” waveform

Limitations:
■ High reset rate when glitching (why?)

■ Blindly trusting genetic algorithm to do the job

■ What features (do not) work in a waveform?

Traditional Arbitrary

waveform

injection
method

square pulse (idealized) polynomial interpolation

Vcc

GND

Vcc

GND

glitch μC
GND

μC
+
− Vcc

AWG

glitch on
glitch off

glitch type
parametersVcc

GND

[1] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. “Shaping the Glitch: Optimizing Voltage Fault Injection Attacks”. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems (Feb. 28, 2019), pp. 199–224. issn: 2569-2925. url: https://tches.iacr.org/index.php/TCHES/article/view/7390

Oregon State University 2

https://tches.iacr.org/index.php/TCHES/article/view/7390


Our Work and Why it May Matter to You

■ Questions we investigate
■ How to move away from random supporting points?

■ Is it possible to constrain the waveform to hardware-limits?

■ Can we limit the search-space prior to automated learning?

■ Challenges we want to solve
■ Find properties of a glitch that promote success and reduce reset rate
■ Generate waveforms more systematically while respecting hardware-constraints
■ Provide safety guarantees on all generated waveforms

■ Scope of this work
■ Focus on the properties of the waveform generation prior to automated learning

■ In other words: this is not about the efficiency of the search (covered separately)

→ targeted improvements important to perform security testing more economically!

Oregon State University 3



Outline of our Work

1. Waveform Parametrization
■ Defining “valid” waveforms

■ Polynomial basis: what can go wrong

■ Our proposed approach: Modular Splines for generating waveforms

2. Awgsomefi: Fault Injection Framework (see paper)
3. Case Studies

■ Loop escape on the STM32F0 with specificity
■ Improved firmware extraction from the 78K0R

4. Conclusion
■ Summary

■ Future Work

Oregon State University 4



Waveform Parametrization: Our Constraints

■ Starts at 𝑡0 and ends at 𝑡𝑛

■ Begins and ends at 𝑉𝑛𝑜𝑚

■ Must stay within [𝑉𝑚𝑖𝑛,𝑉𝑚𝑎𝑥 ] to
avoid damaging the chip

t0 tn
Glitch Time

Vmin

Vnom
Vmax

Vo
lt

ag
e

Oregon State University 5



Naive Interpolation
■ For simplicity, let’s interpolate polynomial on equispaced points

■ We set waveform(𝑡0) = waveform(𝑡𝑛) = 𝑉𝑛𝑜𝑚

■ The rest randomly picked to be within [𝑉𝑚𝑖𝑛,𝑉𝑚𝑎𝑥 ]
■ What can possibly go wrong? (paper=more explanations, discussing cubic interpolation)

t0 tn
Glitch Time

Vmin

Vnom

Vmax

Vo
lt

ag
e

Oregon State University 6



Naive Interpolation
■ For simplicity, let’s interpolate polynomial on equispaced points

■ We set waveform(𝑡0) = waveform(𝑡𝑛) = 𝑉𝑛𝑜𝑚

■ The rest randomly picked to be within [𝑉𝑚𝑖𝑛,𝑉𝑚𝑎𝑥 ]
■ What can possibly go wrong? (paper=more explanations, discussing cubic interpolation)

t0 tn
Glitch Time

Vmin

Vnom

Vmax

Vo
lt

ag
e

Oregon State University 6



Cubic Hermite Splines as Waveforms

■ Needed: Smoothness/control tradeoff

■ Set first derivative at interpolation points

■ Interpolation points once differentiable

t0 tn
Glitch Time

Vmin

Vnom

Vmax

Vo
lt

ag
e

■ Idea: What if we set the derivative at each breakpoint to 0?

■ Only interpolation points can be minima/maxima in interval. . .

→ Benefit: waveform will always stay inbounds!

Oregon State University 7



Selection of Glitch Duration
■ 𝑡0 mostly picked analytically (e.g. by doing side-channel analysis)

■ Instead of selecting 𝑡𝑛 we look for 𝑡Δ = 𝑡𝑛 − 𝑡0

■ In previous works this is an additional parameter for exhaustive testing

■ Observation: Not all durations make sense for complicated waveforms

Figure: 120 ns vs. 800 ns glitch.

Oregon State University 8



Modular Splines: Limiting the Slew Rate
■ Idea: construct the Hermite spline one segment at a time

1. Begin at 𝑡0 and 𝑉0 = 𝑉𝑛𝑜𝑚
2. Choose 𝑡𝑖+1 > 𝑡𝑖

3. Choose 𝑉𝑖+1 such that

���𝑉𝑖+1−𝑉𝑖𝑡𝑖+1−𝑡𝑖

��� < 𝑙𝑖𝑚𝑖𝑡Δ𝑉

4. Repeat from step 2 until 𝑖 = 𝑛 − 1

5. Choose large enough 𝑡𝑛 so that

���𝑉𝑛𝑜𝑚−𝑉𝑛−1
𝑡𝑛−𝑡𝑛−1

��� < 𝑙𝑖𝑚𝑖𝑡Δ𝑉

■ For very small 𝑡𝑖+1 − 𝑡𝑖 =⇒ 𝑉𝑖+1 ≈ 𝑉𝑖

■ For large enough 𝑡𝑖+1 − 𝑡𝑖 =⇒ 𝑉𝑖+1 chosen from [𝑉𝑚𝑖𝑛,𝑉𝑚𝑎𝑥 ]

■ 𝑡Δ no longer chosen arbitrarily: sum of segments!

■ The more “complex” the glitch the higher its average duration

→ Benefit: search space for 𝑡𝑛 determined by OPAMP capability

Oregon State University 9



Modular Splines in Action

t0 tn
Glitch Time

\min

\nom

\max
Vo

lt
ag

e
Step 0

Step 1

Oregon State University 10



Modular Splines in Action

t0 tn
Glitch Time

\min

\nom

\max
Vo

lt
ag

e
Step 0

Step 1

Step 2

Oregon State University 10



Modular Splines in Action

t0 tn
Glitch Time

\min

\nom

\max
Vo

lt
ag

e
Step 0

Step 1

Step 2

Step 3

Oregon State University 10



Modular Splines in Action

t0 tn
Glitch Time

\min

\nom

\max
Vo

lt
ag

e
Step 0

Step 1

Step 2

Step 3
Step 4

Oregon State University 10



Modular Splines in Action

t0 tn
Glitch Time

\min

\nom

\max
Vo

lt
ag

e
Step 0

Step 1

Step 2

Step 3
Step 4

Step 5

Oregon State University 10



Modular Splines in Action

t0 tn
Glitch Time

\min

\nom

\max
Vo

lt
ag

e
Step 0

Step 1

Step 2

Step 3
Step 4

Step 5

Step 6

Oregon State University 10



Modular Splines: Summary

■ Proposed option is the only one that is guaranteed to be in bounds

■ Searchspace reduced by bounding voltages at interpolation points based on slew rate

■ Full parameters list:

1. Start time of glitch, 𝑡0
2. Total number of spline segments, 𝑛

3. Segments 𝑡𝑖 (𝑛 total)

4. Inner voltages, 𝑉𝑖 (𝑛 − 1 total) bounded by slew rate!

→Modular Splines prove a much more systematic approach with smaller search-space!

Oregon State University 11



Outline of this Work

1. Waveform Parametrization
■ Defining “valid” waveforms

■ Polynomial basis: what can go wrong

■ Modular Splines for generating waveforms

2. Awgsomefi: Fault Injection Framework (see paper)
3. Case Studies

■ Loop escape on the STM32F0 with specificity
■ Improved firmware extraction from the 78K0R

4. Conclusion
■ Summary

■ Future Work

Oregon State University 12



Outline of this Work

1. Waveform Parametrization
■ Defining “valid” waveforms

■ Polynomial basis: what can go wrong

■ Modular Splines for generating waveforms

2. Awgsomefi: Fault Injection Framework (see paper)

3. Case Studies
■ Loop escape on the STM32F0 with specificity
■ Improved firmware extraction from the 78K0R

4. Conclusion
■ Summary

■ Future Work

Oregon State University 13



Case Study: STM32 Loop Escape

1 while (glitched) // <− Glitch
2 {
3 ;
4 }
5 glitched++;
6 asm(”NOP”);
7 asm(”NOP”);
8 // continue NOP slide
9

10 if (glitched == 0x01u) {
11 sigTermOne();
12 sigEnabTwo();
13 } else if (glitched == 0x02u) {
14 sigTermOne();
15 sigTermTwo();
16 }
17 // Check other possible signals

■ Goal: escape from loop

■ How many instructions skipped?

■ Can we control number of skips?

Oregon State University 14



STM32: Waveform Base Comparison

0 25 50 75 100 125 150 175 200
Glitch Time (ns)

1.0

1.5

2.0

2.5

3.0

Vo
lt

ag
e 

(V
)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Sl
ew

 R
at

e 
(V

/n
s)

(a) Chebyshev polynomial and its derivative. (b) Polynomial-glitch applied to STM32.

0 25 50 75 100 125 150 175 200
Glitch Time (ns)

1.0

1.5

2.0

2.5

3.0

Vo
lt

ag
e 

(V
)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Sl
ew

 R
at

e 
(V

/n
s)

(c) Spline glitch waveform and its derivative. (d) Spline-glitch applied to STM32.

Figure: Polynomial (0% glitch success) vs. Hermite spline (40% glitch success).

Oregon State University 15



STM32: Exploring Specificity

■ Can we look for waveforms that achieve

single vs double instruction skips?

■ Small difference in waveform: big

difference in outcome!

0 15 30 45 60 75 90 105 120 135 150
Glitch Time (ns)

1.0

1.5

2.0

2.5

3.0

Vo
lt

ag
e 

(V
)

Single Instruction Skip
Double Instruction Skip

Single Skip Success Rate Double Skip Success Rate

Single Skip Waveform 55% ≈ 0%
Double Skip Waveform 6% 41%

Oregon State University 16



Case Study: 78K0R Firmware Extraction
78K0R Plan of Attack: verify-only microcontroller

Need ChecksumLeak and ShortVerify as gadgets

■ ChecksumLeak: Omit a byte from the checksum

■ Subtract corrupted checksum from correct checksum to leak a byte!

■ We found waveform that can leak one or two bytes

■ Noisy gadget =⇒ need ShortVerify

Corrupted ChecksumChecksum CalculationCommand ACK

GLITCH

Glitch Trigger

Uart

Vcc-Regc

Trigger Vcc-Regc

1400 μs

Oregon State University 17



78K0R Plan of Attack: ShortVerify

■ ShortVerify: Verify multiples of 4 bytes

■ Normally can only verify multiples of 256 bytes

■ Verifications must be 256 byte aligned

■ In previous works, fault injection is used

■ In this work: “properly configured software bypass”

Programmer 78K0R

Verify Command (as intended)

Verify[startAddr][endAddr]

Status Frame

Data Frame[Len][Data][ETB/ETX]

Status Frame (ST1/ST2)

ShortVerify Command (proposed)

Verify[startAddr][startAddr+256]

Status Frame

Data Frame[Len=4][DataWord][ETX]

Status Frame (ST1/ST2)

Programmer 78K0R

Oregon State University 18



Our Attack

Idea: Extract 4 bytes at a time

Let’s try to extract bytes 4 − 7.

1. Find the reference checksum (no glitch) 1

2. Leak candidates for couplet 4, 5
■ Use ChecksumLeak to omit byte 4 2

■ Use ChecksumLeak again to omit bytes 4, 5 3

3. Leak candidates for couplet 6, 7
■ Use ChecksumLeak to omit byte 6 2

■ Use ChecksumLeak again to omit bytes 6, 7 3

4. Concatenate candidate couplets and run

ShortVerify to find the correct bytes!

ChecksumLeak Command (2-Byte variant)

Checksum[startAddr][endAddr]

Programmer 78K0R

Data Frame (checksum data)

Checksum[startAddr][endAddr]

Data Frame (checksum glitch1B)

Glitch(4, single-byte skipped)

Checksum[startAddr][endAddr]

Data Frame (checksum glitch2B)

Glitch(4, two-bytes skipped)

1

2

3

Oregon State University 19



Our Glitch Waveform
■ About 2x longer than used in original work

■ Allows double glitches

■ Smooth: no overshoots

■ Lower reset rate =⇒ more glitches per given time interval

0 250 500 750 1000 1250 1500 1750
Glitch Time (ns)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Vo
lt

ag
e 

(V
)

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

Sl
ew

 R
at

e 
(V

/n
s)

(a) Fault injection waveform. (b) Scope measurement of fault injection.

Oregon State University 20



Benchmark Comparison

After 10 minutes of glitching (same condition as [1])

Vulnerability Technique Success (S) Reset (R) R/S Glitches

ShortVerify AWG [1] 1291 (6.8%) 2786 (14.6%) 2.16 19044

this work [2] 10216 (100%) – – 0

ShortChecksum AWG [1] 728 (4.4%) 2912 (17.7%) 4.01 16475

this work [3] – – – –

ChecksumLeak AWG [1] 687 (8.6%) 2515 (31.5%) 3.66 7977

this work [4] 1427 (8.8%) 389 (2.4%) 0.27 16216

→ Overall, new techniques made this a much more powerful attack!

[2] software-only bypass: always successful!

[3] not needed: search-space small enough

[4] Reset/Success rate improved from 3.66 to 0.27
Oregon State University 21



Outline of this Work

1. Waveform Parametrization
■ Defining “valid” waveforms

■ Polynomial basis: what can go wrong

■ Modular Splines for generating waveforms

2. Awgsomefi: Fault Injection Framework (see paper)

3. Case Studies
■ Loop escape on the STM32F0 with specificity
■ Improved firmware extraction from the 78K0R

4. Conclusion
■ Summary

■ Future Work

Oregon State University 22



Summary and Future work

Summary:
■ Arbitrary wave voltage glitches provide interesting new opportunities

■ Full potential has not been realized yet

■ We proposed and demonstrated a new waveform parametrization method

■ Using specificity, we vastly improved an existing firmware extraction attack

Future work:
■ Do we have to interpolate or are there even better options?

■ Modular Splines will benefit from new search strategies (work in progress)

■ X-device profiling and how well does this perform when facing countermeasures?

Oregon State University 23



Thank you for your attention!
Questions?

vincent.immler@oregonstate.edu

Oregon State University 24



Backup Slides for Q&A

Oregon State University 25



Arbitrary Waveform Glitches: Polynomials

■ Property 1: Polynomials can approximate

any waveform in the [𝑡0, 𝑡𝑛] interval
■ Property 2: Degree 𝑛 polynomials are

uniquely determined by 𝑛 + 1 points

t0 tn
Glitch Time

Vmin

Vnom
Vmax

Vo
lt

ag
e

■ Idea: Interpolate polynomials on 𝑛 + 1 points within [𝑡0, 𝑡𝑛] to generate waveforms

■ Question: What points 𝑡 to interpolate on? Does it matter? Yes!

Oregon State University 26



Fixing Oscillations
■ Insight: even if our interpolation points only pass through [𝑉𝑚𝑖𝑛,𝑉𝑚𝑎𝑥 ], the waveform
may still significantly oscillate out of bounds

■ Why does this happen? Runge Phenomenon!

■ Instead we interpolate on Chebyshev nodes

t0 tn
Glitch Time

Vmin

Vnom
Vmax

Vo
lt

ag
e

t0 tn
Glitch Time

\min

\nom
\max

Vo
lt

ag
e

Figure: Interpolating shifted Runge function on equispaced points and Chebyshev nodes.

Oregon State University 27



Cubic Splines as Waveforms
■ Used in all previous works on arbitrary waveform voltage glitching

■ Build complicated waveforms by “stitching” together cubic polynomials

■ Spline is twice differentiable at knots + resilient to oscillations!

■ Multiple configurations available (clamped, not-a-knot)

■ However: slew-rate left uncontrolled!

t0 tn
Glitch Time

Vmin

Vnom
Vmax

Vo
lt

ag
e

Spline: not-a-knot
Spline: clamped

Oregon State University 28



Cubic Splines: Summary

■ Less smooth than polynomials but still twice differentiable everywhere

■ Potentially much larger search space (but also better control)

■ Stays in bounds (mostly) even on equidistant points

t0 tn
Glitch Time

Vmin

Vnom
Vmax

Vo
lt

ag
e

Oregon State University 29


